
Current time: 13th October, 2023, 02:43
Open Buddy List

Threaded Mode | Linear Mode

22nd September, 2023, 22:22 Post: #1

Search Member List Calendar Help

Welcome back, Valentin Albillo. You last visited: Today, 01:43 (User CP — Log Out)
View New Posts | View Today's Posts | Private Messages (Unread 0, Total 231)

HP Forums / HP Calculators (and very old HP Computers) / General Forum / [VA] SRC #015b - HP-15C & clones:
COMPLEX Matrix Inverse up to 8x8

[VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Valentin Albillo
Senior Member

Posts: 1,003
Joined: Feb 2015
Warning Level: 0%

[VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hi all,

This is my 1,000th post in this New Forum (plus ~1,600 posts in the old one) since I joined back in 2015 and I want it
to be a particularly noteworthy one, so here you are !

Welcome to this second part of my latest thread SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant,
which I created to commemorate the availability of the HP-15C Collector's Edition.

Note: This second part will also be included together with the first part in my future full article HP Article VA058 - Boldly Going - HP-15C CE Big Matrix
Woes. Although I created both parts at the same time I eventually decided to split the whole into two separate threads lest it would be too long and
unwieldy if left in one piece.

The first part dealt with computing the NxN real matrix inverse and determinant for large values of N (2 ≤ N ≤ 16,) in
particular for N exceeding the firmware limitation of 8x8 matrices. Additional posts to that thread by Werner, J-F Garnier and
myself further dealt with:

Real matrix inversion and determinant up to 13x13 (my OP)
Real linear systems up to 13x13,
Complex matrix inversion up to 6x6
Complex systems of equations up to 6x6,
Computing the absolute value of the determinant of a complex matrix up to 6x6,

using various approaches. See that thread for the details, a must read. So far so good.

However, in the particular case of complex matrix inversion we can do better than 6x6, as we'll see now.

The Problem

The approach that Werner and J-F Garnier followed in Part 1 for inverting complex matrices is based in the technique featured
in both the HP-15C CE Owner's Handbook (p.165) and the Advanced Functions Handbook (p.128,) consisting in
converting the NxN complex matrix to a 2Nx2N real matrix, which is then dealt with by using the built-in functions for real
matrices, as well as pre- and post-applying a number of ad-hoc transformations (MATRIX 2, MATRIX 3, Py,x, Cy,x.)

This is most fine and dandy but it has a number of serious problems, among them:

1. It's quite a cumbersome procedure, with up to 4 ad-hoc transformations to remember and apply and up to eight or nine
manual steps to obtain the complex matrix inverse, let alone solving a system of complex equations. As Maximilian
Hohmann said in this recent post (my bold):

"[...] I have been into this calculator thing since 1976 or so. Yes, I have a "real" 15C and the "SE" and now the
"CE", but, for example, the way complex matrices are dealt with is beyond my comprehension [...] I could
work my [way] through the manual and follow the examples, but if I then need to perform such a calculation three
months later I would have to start from scratch again [...] by today's standards, the way it is done is totally
counter-intuitive [...]"

2. Converting the original NxN complex matrix to a 2Nx2N real matrix requires twice the memory, which seriously limits

the size of the largest complex matrix that can be inverted within the available memory.

For instance, an 8x8 complex matrix requires 128 registers ("regs" for short) just to be stored, but inverting it using
HP's described conversion to a 2Nx2N real matrix would require twice that, i.e. 256 regs. This is extremely wasteful and
matter of fact the HP-15C CE in 192-reg Mode can't invert complex matrices larger than 6x6 using HP's approach, as
7x7 and 8x8 require 196 and 256 regs, respectively, which simply aren't available. So, what to do ?

https://www.hpmuseum.org/forum/newreply.php?tid=20536
https://www.hpmuseum.org/forum/showthread.php?mode=threaded&tid=20536&pid=177564#pid177564
https://www.hpmuseum.org/forum/showthread.php?mode=linear&tid=20536&pid=177564#pid177564
https://www.hpmuseum.org/forum/thread-20536-post-177564.html#pid177564
https://www.hpmuseum.org/
https://www.hpmuseum.org/forum/search.php
https://www.hpmuseum.org/forum/memberlist.php
https://www.hpmuseum.org/forum/calendar.php
https://www.hpmuseum.org/forum/misc.php?action=help
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/member.php?action=logout&logoutkey=ae6a25c5499c5ff7846b6ca9149ec78b
https://www.hpmuseum.org/forum/search.php?action=getnew
https://www.hpmuseum.org/forum/search.php?action=getdaily
https://www.hpmuseum.org/forum/private.php
https://www.hpmuseum.org/forum/index.php
https://www.hpmuseum.org/forum/forum-3.html
https://www.hpmuseum.org/forum/forum-4.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/thread-20271.html
https://www.hpmuseum.org/forum/thread-20271.html
https://www.hpmuseum.org/forum/thread-20271.html
https://literature.hpcalc.org/official/hp15c-ce-oh-en.pdf
https://literature.hpcalc.org/official/hp15c-ce-afh-en.pdf
https://www.hpmuseum.org/forum/thread-19886-post-177504.html#pid177504

My Solution

Once more, an entirely new strategy is needed. The main problem is that conversion to a 2Nx2N real matrix uses 4x the
memory that an NxN real matrix would need, instead of 2x, but implementing an LU-based procedure would result in a long
program much slower than the 2Nx2N approach.

To sidestep this problem I use an approach which avoids wasting memory by not converting the NxN complex matrix to a
2Nx2N real one, while also using the built-in microcode real inversion instruction (1/x) for maximum speed, making sure it
never has to invert a matrix larger than 8x8. Enter split complex matrices.

A split complex matrix is an NxN complex matrix M considered to be split into two real NxN matrices A, B, containing the real
and imaginary parts, respectively, of the complex elements of M, like this:

 │ 5 + 3i 4 + 7i 8 1 + 2i 6 + 6i │
 │ 7 + 2i 5i 3 + 4i 8 + i 1 │
 M = │ 8 + 4i 2 + 5i 6 + 7i 3 + 8i 5 │ = A + iB
 │ 6 + i 4 + 2i 3 + 7i 4 + 2i 6 + 5i │
 │ 3 + 7i i 8 + 7i 1 + 3i 2 + 4i │

where A (real parts) and B (imaginary parts) are:

 │ 5 4 8 1 6 │ │ 3 7 0 2 6 │
 │ 7 0 3 8 1 │ │ 2 5 4 1 0 |
 A = │ 8 2 6 3 5 │ , B = │ 4 5 7 8 0 │
 │ 6 4 3 4 6 │ │ 1 2 7 2 5 │
 │ 3 0 8 1 2 │ │ 7 1 7 3 4 │

and as it happens, there are efficient algorithms to invert such split complex matrices by interacting directly with their parts
stored in real matrices, thus no complex arithmetic is ever needed as all computations are carried out in the real domain, with
a noticeable speed advantage which is further increased because my routine spends most of its time executing microcode, not
RPN user code.

Another important consideration is code size. Like the original one, the HP-15C CE has no way to save/load programs to/from
mass storage (say by connecting to a laptop,) thus entering programs has to be done by manually typing them in, which
becomes exceedingly bothersome, time-consuming and error-prone when the programs are long (say 100-200 steps or more,)
and all you see are numeric keycodes.

It's one thing if you're using a single long program all the time but entirely another if you want to use your CE for various
purposes requiring assorted programs, as eventually you'll be forced to erase one to make room for another and this will get
utterly inconvenient, slow and annoying pretty soon.

To wit, a program might be a fine achievement and work well but if the user has to painstakingly key in a large number of
program steps to use it, chances are it won't be used much if at all, not even to just check it out. Thus, I think it's important
that my solution is very short, to maximize its potential use and minimize the burden of loading it into the calculator.

The implementation: Complex Matrix Inversion up to 8x8

This 31-step (32-byte) routine will invert in place an NxN split complex matrix M for 1 ≤ N ≤ 8 (subject to available
memory.) It takes no inputs but the caller (the user or another program) must have previously dimensioned and populated the
two real matrices A, B with the corresponding parts of M's elements.

Once it returns, the original values in A, B will have been replaced with those of the complex inverse matrix, which the user or
the caller program may then proceed to output or use as desired. In other words, this routine can be called from the keyboard
or another program (in which case it could be directly embedded into it if called from a single location) but it doesn't perform
any input or output operations, it just does the inversion in place.

Program listing

 LBL C 001- 42,21,13
 RCL MATRIX A 002- 45,16,11
 RCL MATRIX B 003- 45,16,12
 RESULT E 004- 42,26,15
 + 005- 40
 1/x 006- 15
 RCL MATRIX B 007- 45,16,12
 RCL MATRIX A 008- 45,16,11
 RESULT B 009- 42,26,12
 - 010- 30
 X<>Y 011- 34
 RESULT A 012- 42,26,11
 x 013- 20

 CHS 014- 16
 LASTX 015- 43 36
 RESULT E 016- 42,26,15
 1/x 017- 15
 X<>Y 018- 34
 RCL MATRIX B 019- 45,16,12
 MATRIX 6 020- 42,16, 6
 1/x 021- 15
 RCL MATRIX A 022- 45,16,11
 RESULT B 023- 42,26,12
 x 024- 20
 RESULT A 025- 42,26,11
 + 026- 40
 LASTX 027- 43 36
 RCL MATRIX E 028- 45,16,15
 RESULT B 029- 42,26,12
 - 030- 30
 RTN 031- 43 32

 Notes:

This routine doesn't use or alter any numbered storage registers, including the three permanent index registers R0, R1
and RI.

Also, it uses no flags, labels (save LBL C), branching, loops (simple or nested), logic tests of any kind or scalar
operations and it runs sequentially from its first to its last step, executing each just once, which means it executes
exactly 31 user-code instructions in all (not hundreds or thousands like other approaches,) so it runs very fast (0.93" to
invert a 5x5 complex matrix, 2.4" for a 7x7 one.)

The inversion is performed in place: once the process ends the elements of the complex inverse replace those of the
original matrix (so reinverting the computed inverse would get back the original complex matrix) and for what is worth,
on completion it leaves the A matrix (real parts) in Y and the B matrix (imaginary parts) in X.

The approach used requires 3NxN regs instead of the 4NxN regs required by the conversion to a real 2Nx2N matrix. The
resulting NxN regs saved can be used to allow processing larger matrices or for other purposes. After the inversion, yet
another batch of NxN regs can be freed, as discussed next.

Once the inversion is over, you can redimension auxiliary matrix E to 0x0, which frees NxN regs for other uses such as
additional data or code (up to 7NxN program steps.) For instance, to solve an NxN system of N complex equations
you could dimension the constant and solutions matrices to be Nx2 each, which would still leave enough memory for the
program code to matrix-multiply the inverse matrix and the constant matrix to produce the complex solution matrix.

Hint: To redimension a matrix (say E) to 0x0 you don't need to execute 0, ENTER, DIM E, just 0, DIM E or CLX, DIM E will do no matter what's in
the Y register (even if it holds a huge or negative number or even a matrix descriptor).

 Requirements:

The maximum size NxN complex matrix M you can invert depends on the memory available in your physical or virtual
device, as per this table:

 M A,B,E Regs +Prog Comments

 1x1 1x1 3 8 -
 2x2 2x2 12 17 -
 3x3 3x3 27 32 -
 4x4 4x4 48 53 Max. size w/ 15C/64 but see (*)
 5x5 5x5 75 80 ditto CE/96
 6x6 6x6 108 113 -
 7x7 7x7 147 152 ditto CE/192 but see (**)
 8x8 8x8 192 197 ditto DM15/M1B

so e.g. if you want to invert an 8x8 complex matrix you need 197 regs available, which includes matrices A, B (and E,)
plus 5 regs to hold the routine itself. Auxiliary matrix E also needs to be NxN because the HP-15C can't multiply two
NxN matrices in place, a third NxN matrix (E) is needed to store the result.

Implementation note: A 7x7 real matrix occupies 49 regs so you can have only three such matrices simultaneously at any given time because
using a fourth matrix would require 196 regs, exceeding the 192 regs available in the CE/192.

To overcome this limitation, I've used a trick to make do with only three matrices. If there was room for a fourth matrix (which is the case when
using a CE/192 and dealing with 6x6 or smaller complex matrices,) a version of my routine limited to those sizes would be ~30% faster.

The routine works as-is for complex matrices up to and including 8x8. Larger complex matrices wouldn't work because
of both the 8x8 firmware limitation for (real) inversion and memory constraints. As of Sept. 2023 no physical or virtual
devices exist which provide more than 229 regs because the HP-15C has a RAM limit of 256 regs and 27 of those are
used internally by the firmware.

This means that matrices 9x9 or larger can't be tackled using this routine on any currently existing device. However, it

might be possible that some future patch would override those restrictions, in which case this routine would invert
complex matrices larger than 8x8 without any modifications.

The matrix A+B must be invertible, i.e. det(A+B) # 0. For most real-life uses this will be the case but if this condition
isn't met there are slight variations to this routine that would work Ok in those cases.

 (*) Observation re the original HP-15C and 4x4 complex matrices:

The original HP-15C could invert a 4x4 complex matrix but it took all 64 regs available and was a complicated,
completely manual process as there wasn't any memory left for program code. On the other hand, running my routine is
a fast, automated process that leaves out all the drudgery (transformations, etc.) and still leaves 11 regs (up to 77 extra
program steps) free for additional code or data.

Furthermore, now it seems possible to solve a system of 4 complex equations with equal ease, like this (see
Worked Example below for basic details):

Initialize and store the data in the A, B matrices.

Call my complex inversion routine. When it ends, the complex inverse is stored in A, B and there's still 11 regs
free. Optionally, output the inverse by the usual procedure (RCL A, B in USER mode) either now or after the
system is solved, as the solving procedure doesn't affect the inverse.

Get rid of auxiliary matrix E (redimension it to 0x0.) This frees another 16 regs, so there's now 27 regs available
for what follows.

Dimension both the constant matrix (say C) and the solution matrix (say D) to be 4x2 and populate the constant
matrix. This will leave 11 regs (up to 77 program steps) still available for the matrix-multiplication code, which is
left as a fairly easy exercise for the reader (just a loop which multiplies each row of the inverse by the constant
matrix using complex arithmetic.)

Run said matrix-multiplication code, which should use the inverse's data in A, B to multiply the inverse and the
constant matrix C, storing the result in the complex solution matrix D.

Output or otherwise make use of the complex solution matrix.

All these steps can be coded as a single program which inverts the complex matrix, gets rid of E to make room,
dimensions the constant and solution matrices and stops for the user to populate the constant matrix; once done, the
user presses R/S to continue execution and the solution matrix is computed for the user to output or other code to use
it.

The inverse matrix is left undisturbed so other systems having the same original matrix and different constant matrices
can be solved outright using the same inverse matrix. Moreover, the original matrix can be recovered if desired
(negligible rounding errors aside,) by ensuring that the inverse remains intact and there's at least 16 regs available,
then reinverting the inverse matrix with a GSB C.

This would completely automate the task of inverting a 4x4 complex matrix or solving a system of 4 complex equations
on an original HP-15C, with no complicated transformations or manual steps whatsoever.

 (*) Observation re the HP-15C CE and 8x8 complex matrices:

Though there's not enough room in the HP-15C CE in 192-regs Mode to invert an 8x8 complex matrix M by running the
routine featured here (197 regs would be needed; the routine itself wouldn't fit) there's just enough room for the split
matrices A, B and the auxiliary matrix E (192 regs in all,) so the 8x8 complex matrix can be inverted in a pinch if the
user executes the 29 program instructions manually in sequential order. The procedure would be like this:

Initialize and store the data in the A, B matrices.

Carefully execute manually the 29 instructions from 002 RCL MATRIX A to 030 - in sequential order. Assuming
you're reasonably proficient with the HP-15C, this should take ~ 3 min. or less.

Output or otherwise make use of the inverted complex matrix data in A, B. Now you can redimension auxiliary
matrix E to 0x0 to free 64 regs (up to 448 program steps) for further processing using the inverse matrix just
computed (e.g. solving a system of 8 complex equations.)

This procedure is perfectly workable and reasonably fast if you want to invert an 8x8 complex matrix using a CE/192 but
you should be very careful as most errors keying in an instruction could mean having to restart from the beginning,
including re-storing the elements anew in A, B.

Worked example

The following example can be run on the HP-15C CE (Collector's Edition) in its 96- or 192-regs Mode, as well as in any
physical/virtual clone with at least 80 regs allocatable.

Note: The usefulness of this relatively small 5x5 example is twofold: first, to get to know how to use the routine and get comfortable using it and second, to
ascertain that you've loaded it correctly into program memory by running it and checking the results it produces.

Invert the following 5x5 complex matrix M: (matrix taken from this J-F's post)

 │ 5 + 3i 4 + 7i 8 1 + 2i 6 + 6i │
 │ 7 + 2i 5i 3 + 4i 8 + i 1 │
 M = │ 8 + 4i 2 + 5i 6 + 7i 3 + 8i 5 │
 │ 6 + i 4 + 2i 3 + 7i 4 + 2i 6 + 5i │
 │ 3 + 7i i 8 + 7i 1 + 3i 2 + 4i │

- The A (real parts) and B (imaginary parts) matrices are:

 │ 5 4 8 1 6 │ │ 3 7 0 2 6 │
 │ 7 0 3 8 1 │ │ 2 5 4 1 0 |
 A = │ 8 2 6 3 5 │ , B = │ 4 5 7 8 0 │
 │ 6 4 3 4 6 │ │ 1 2 7 2 5 │

 │ 3 0 8 1 2 │ │ 7 1 7 3 4 │

- Ensure disabled complex stack and set 4 decimal places:

 CF 8, FIX 4

- Allocate all memory to matrices, initialize them and dimension the real/imag parts A, B to 5x5:

 1, DIM (i), MATRIX 0
 5, ENTER, DIM A, DIM B

- Store the real parts of M's elements into matrix A:

 USER, MATRIX 1

 5 STO A, 4 STO A, 8 STO A, 1 STO A, 6 STO A,

 7 STO A, 0 STO A, 3 STO A, 8 STO A, 1 STO A,
 8 STO A, 2 STO A, 6 STO A, 3 STO A, 5 STO A,
 6 STO A, 4 STO A, 3 STO A, 4 STO A, 6 STO A,
 3 STO A, 0 STO A, 8 STO A, 1 STO A, 2 STO A

- Store their imaginary parts into matrix B:

 3 STO B, 7 STO B, 0 STO B, 2 STO B, 6 STO B,
 2 STO B, 5 STO B, 4 STO B, 1 STO B, 0 STO B,
 4 STO B, 5 STO B, 7 STO B, 8 STO B, 0 STO B,

 1 STO B, 2 STO B, 7 STO B, 2 STO B, 5 STO B,
 7 STO B, 1 STO B, 7 STO B, 3 STO B, 4 STO B

- Compute in-place the complex inverse matrix M':

 GSB C -> B 5 5 {in 0.93"}

- Recall the inverse matrix elements from A and B:

 Real parts:

 RCL A: -0.1197, RCL A: -0.0070, RCL A: 0.0635, RCL A: 0.0322, RCL A: 0.0285,
 RCL A: 0.0247, RCL A: -0.0206, RCL A: 0.0232, RCL A: -0.0363, RCL A: 0.0638,
 RCL A: 0.0277, RCL A: -0.0416, RCL A: 0.0183, RCL A: -0.0348, RCL A: 0.0439,
 RCL A: 0.0397, RCL A: 0.0886, RCL A: -0.0975, RCL A: 0.0319, RCL A: -0.0036,
 RCL A: 0.0587, RCL A: 0.0388, RCL A: -0.0482, RCL A: 0.0509, RCL A: -0.0549

 Imaginary parts:

 RCL B: -0.0115, RCL B: -0.1044, RCL B: 0.0663, RCL B: 0.0940, RCL B: -0.1395,
 RCL B: -0.1038, RCL B: -0.0652, RCL B: -0.0403, RCL B: 0.0796, RCL B: 0.0945,
 RCL B: 0.0430, RCL B: 0.0005, RCL B: -0.0459, RCL B: -0.0329, RCL B: 0.0005,

 RCL B: -0.0081, RCL B: 0.1066, RCL B: -0.0765, RCL B: -0.0271, RCL B: 0.0520,
 RCL B: -0.0181, RCL B: 0.0712, RCL B: 0.0676, RCL B: -0.1183, RCL B: 0.0114

and so the 5x5 complex inverse matrix M' is:

 │ -0.1197-0.0115i -0.0070-0.1044i 0.0635+0.0663i 0.0322+0.0940i 0.0285-0.1395i │
 │ 0.0247-0.1038i -0.0206-0.0652i 0.0232-0.0403i -0.0363+0.0796i 0.0638+0.0945i │
 M' = │ 0.0277+0.0430i -0.0416+0.0005i 0.0183-0.0459i -0.0348-0.0329i 0.0439+0.0005i │
 │ 0.0397-0.0081i 0.0886+0.1066i -0.0975-0.0765i 0.0319-0.0271i -0.0036+0.0520i │
 │ 0.0587-0.0181i 0.0388+0.0712i -0.0482+0.0676i 0.0509-0.1183i -0.0549+0.0114i │

https://www.hpmuseum.org/forum/thread-20271-post-176746.html#pid176746

25th September, 2023, 16:52 Post: #2

Notes:

If in doubt, a simple way to check the inverse's correction is to reinvert it once you've written down its elements, which
should still be undisturbed in memory. Simply run the routine again:

 C (in USER mode) or GSB C (out of USER mode) -> B N N

and you'll get the original matrix back (ignoring negligible rounding errors,) which can be verified by using RCL in USER
mode, as we did in the Worked Example above.

Once you're done with using the routine you might want to free memory by resizing all matrices A, B and the auxiliary
matrix E to 0x0 as well as resetting the row/col indexes and reallocating the default numbered storage registers R0-R.9,
like this:

 MATRIX 0, MATRIX 1, 19, DIM (i)

That's all, hope you enjoyed it and found it useful for your own purposes. Comments welcome.

V.

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Very nice, Valentin!
You make it increasingly harder for me to improve upon your code ;-)
I did manage to squeeze off a puny byte, a stack instruction, which will make little to no difference.
The one thing I miss in your extensive posts, however, is some explanation of the algorithm used.
So here goes, and it is based on my version of your code - which simply switches the roles of matrices E and B.

To invert a complex matrix A+iB = X+iY, you need to solve

 A.X – B.Y = I
 B.X + A.Y = 0

Add and subtract:
(This step is needed to make reasonably certain that the main matrix is invertible)

 (A+B).X - (B-A).Y = I
 (B-A).X + (A+B).Y = -I

Let

 E := B - A;
 B := A + B;

then the equations become

 B.X - E.Y = I (1)
 E.X + B.Y = -I (2)

multiply (2) by E.B^-1 and add to (1):

 (B + E.B^-1.E).X = I - E.B^-1

multiply (1) by E.B^-1 and subtract from (2):

 (B + E.B^-1.E).Y = -I – E.B^-1

Then the algorithm becomes:
(with double inversion to keep the number of matrices needed down to 3)

 E := B - A;

 B := (A + B)^-1;
 A := -E*B;
 B := B^-1;
 B := (B – A*E)^-1;
 E := B*A;

 A := E + B;

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=177564
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177564
javascript:Thread.reportPost(177564);
https://www.hpmuseum.org/forum/thread-20536-post-177664.html#pid177664
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

26th September, 2023, 12:49 (This post was last modified: 27th September, 2023 17:36 by Werner.) Post: #3

 B := E - B;

listing (30 lines, 31 bytes):

 LBL C
 RCL MATRIX B
 RCL MATRIX A
 RESULT E

 -
 RCL MATRIX A
 RCL MATRIX B
 RESULT B
 +
 1/x

 RESULT A
 x
 CHS
 RCL MATRIX B
 RESULT B

 1/x
 X<>Y
 RCL MATRIX E
 MATRIX 6
 1/x

 RCL MATRIX A
 RESULT E
 x
 RESULT A
 +
 RCL MATRIX E

 RCL MATRIX B
 RESULT B
 -
 RTN

Cheers, Werner

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Shamelessly stealing borrowing your idea, we can solve systems of equations the same way:

to solve (A+iB)*(X+iY) = C+iD, enter the matrices A,B,C and D, then (GSB) D.
The result will be in matrices C and D
48 lines, 52 bytes:

 LBL D
 RCL MATRIX D
 RCL MATRIX C

 RESULT E
 -
 RCL MATRIC C
 RCL MATRIX D
 RESULT C

 +
 RCL MATRIX B
 RCL MATRIX A
 RESULT D
 -
 RCL MATRIX A

 RCL MATRIX B
 RESULT B
 +
 1/x
 RESULT A

 x
 CHS
 RCL MATRIX B
 RESULT B

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177664
javascript:Thread.reportPost(177664);
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/thread-20536-post-177702.html#pid177702
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

27th September, 2023, 17:43 Post: #4

 1/x
 X<>Y
 RCL MATRIX D

 MATRIX 6
 1/x
 RCL MATRIX C
 STO MATRIX D
 RCL MATRIX A

 RCL MATRIX E
 RESULT D
 MATRIX 6
 RCL MATRIX A
 RCL MATRIX C
 CHS

 RESULT E
 MATRIX 6
 RCL MATRIX B
 RCL MATRIX D
 RESULT C

 x
 RCL MATRIX B
 RCL MATRIX E
 RESULT D
 x

 RTN

You can try out the above example with C the identity matrix and D all zeroes, effectively producing the inverse again.

This routine, incidentally, will allow solving a 4x4 complex system on an original 15C.
(and up to a 7x7 on the 15C2, or an 8x8 on the DM15L-M1B)
However, the original contents of A and B are lost so you can't solve a subsequent system.

Cheers, Werner

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Not quite what you asked for, Valentin, but here's a short routine to multiply two split complex matrices.
Together with your inversion routine, it may be used to solve a system of equations as well.

This routine multiplies the complex matrices A+iB and C+iD, and places the result in C+iD.

 C+iD := (A+iB)*(C+iD);

on condition that A is invertible. It leaves A intact, while B may suffer some accuracy loss.

 (A+iB)*(C+iD) = (A.C - B.D) + i(A.D + B.C)

that is impossible to do with just one extra matrix, so we have to resort to a 'trick'

 A.C - B.D = A*(C - A^-1.B.D)
 A.D + B.C = A*(D + A^-1.B.C)

so we can do:

 E := A;
 B := E^-1*B;
 E := C;
 E := E - B*D;
 D := D + B*C;
 C := A*D;

 D := C;
 C := A*E;
 E := A*B;
 B := E;

If you leave off the last 5 lines, B is not restored, and it's 26 lines, 31 bytes.
31 lines, 37 bytes

 LBL D

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177702
javascript:Thread.reportPost(177702);
https://www.hpmuseum.org/forum/thread-20536-post-177747.html#pid177747
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

29th September, 2023, 15:20 (This post was last modified: 3rd October, 2023 09:16 by Werner.) Post: #5

 RCL MATRIX A
 STO MATRIX E
 RCL MATRIX B

 RCL MATRIX E
 RESULT B
 /
 RCL MATRIX C
 STO MATRIX E

 RCL MATRIX B
 RCL MATRIX D
 RESULT E
 MATRIX 6
 RCL MATRIX A
 RCL MATRIX B

 RCL MATRIX C
 CHS
 RESULT D
 MATRIX 6
 RESULT C

 x
 STO MATRIX D
 RCL MATRIX A
 RCL MATRIX E
 x

 RCL MATRIX A
 RCL MATRIX B
 RESULT E
 x
 STO MATRIX B
 RTN

Cheers, Werner

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

[Update: shaved off 2 bytes ;-)]
Apologies for monopolizing this thread ;-)
Forget all that came before; well, save the previous post on multiplying two complex matrices, which may still be useful as is.
The following three small routines are all you need for complex matrix solving and inverting, in 'split' format.
Enter matrices A,B,C and D separately as before.
- to solve (A+iB)*(X+iY) = C+iD, press (GSB) C and (GSB) D
- to invert A+iB, do (GSB) C and (GSB) E
The GSB C part need only be done once - think of it as the LU-decomposition for regular matrices. So you can solve
subsequent right-hand sides (C,D,D,..), and combine solving and inverting (C,D,D,..,E).
If you leave off LBL E, you have a routine of 48 bytes for solving complex equations, and subsequent ones, if needed. This
routine thus replaces the one I previously posted, which couldn't handle subsequent solves - but it still fits in an original 15C
and allows solving a 4x4 complex system. (the 15CE can solve a 5x5, the 15C-2 a 7x7 and the DM15L an 8x8 system)

The inversion routine alone needs 3.N^2 registers, the solve routine an additional 2N.M registers, where M is the number of
right-hand side columns.
So, to solve a single 4x4 system, you'd need 3.4^2+2.4 = 56 registers. Since the program of 48 bytes uses 7 additional
registers, it still fits in an original 15C.

Routine C (Factor) - 21 bytes
Routine D (Solve) - 27 bytes
Routine E (Invert) - 15 bytes
for a total of 63 bytes.

001 LBL C

002 RCL MATRIX B
003 RCL MATRIX A
004 RESULT E
005 -
006 RCL MATRIX A

007 RCL MATRIX B
008 RESULT A
009 +
010 1/x

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177747
javascript:Thread.reportPost(177747);
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/thread-20536-post-177805.html#pid177805
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

2nd October, 2023, 01:08 (This post was last modified: 3rd October, 2023 00:17 by Gerson W. Barbosa.) Post: #6

(29th September, 2023 15:20)

011 RESULT B
012 x
013 CHS

014 RCL MATRIX A
015 RESULT A
016 1/x
017 X<>Y
018 RCL MATRIX E

019 MATRIX 6
020 RTN
021 LBL D
022 RCL MATRIX D
023 RCL MATRIX C
024 RESULT E

025 -
026 RCL MATRIX C
027 RCL MATRIX D
028 RESULT C
029 +

030 STO MATRIX D
031 RCL MATRIX B
032 RCL MATRIX E
033 MATRIX 6
034 RCL MATRIX A

035 /
036 RCL MATRIX B
037 RCL MATRIX D
038 CHS
039 RESULT E
040 MATRIX 6

041 RCL MATRIX A
042 RESULT D
043 /
044 RTN
045 LBL E

046 RCL MATRIX B
047 RCL MATRIX A
048 RESULT E
049 /
050 RCL MATRIX A

001 RESULT A
002 1/x
053 RESULT B
054 -
055 RCL MATRIX E
056 RCL MATRIX A

057 RESULT A
058 +
059 RTN

Cheers, Werner

Gerson W. Barbosa
Senior Member

Posts: 1,522
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Werner Wrote:

- to solve (A+iB)*(X+iY) = C+iD, press (GSB) C and (GSB) D

Thank you both, Werner and Valentín!
The matrix capabilities in the HP-15C were nice, but the methods in the manual for solving complex linear systems were
somewhat complicated and not easy to remember. I would need to carry the manual along to use it for that task. Doing it
programmatically is a great idea, I wonder why no one thought of this back then – at least I don’t remember of any. These
would have been handy when I got my 15C a few years later.

Here’s a real-world example to illustrate the usage of your latest method. Perhaps not the best example as the main matrix
has only real elements:

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177805
javascript:Thread.reportPost(177805);
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/thread-20536-post-177883.html#pid177883
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/post-177805.html#pid177805

2nd October, 2023, 16:41 (This post was last modified: 3rd October, 2023 00:15 by Gerson W. Barbosa.) Post: #7

(2nd October, 2023 01:08)

Three-phase voltage source (Wye), unbalanced resistive load (Δ), line voltage = 220V.

R₁I₁ + 220√3/3∠120° = 220√3/3

R₂I₂ + 220√3/3 = 220√3/3∠-120°

R₃I₃ + 220√3/3∠-120° = 220√3/3∠120°

R₁ = R₂ = 12.1 Ω; R₃ = 24.2 Ω

A =
| 12.1 0 0 |

| 0 12.1 0 |
| 0 0 24.2 |

B =
| 0 0 0 |

| 0 0 0 |
| 0 0 0 |

C =
| 190.5255888 |

|-190.5255888 |
| 0.000000000 |

D =
|-110 |
|-110 |

| 220 |

GSB C GSB D ->

X =

| I₁ |
| I₂ |
| I₃ |

=

C =
| 15.74591643 |
|-15.74591643 |
| 0.000000000 |

D =
|-9.090909091 |
|-9.090909091 |
| 9.090909091 |

or

I₁ = 18.18181818∠-30°

I₂ = 18.18181828∠-150°

I₃ = 9.090909091∠90°

These are the load currents. The source currents are I₁ - I₂, I₂ - I₃ and I₃ - I₁.

Edited to add three missing negative signs (corrections in red).

Gerson W. Barbosa
Senior Member

Posts: 1,522
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Gerson W. Barbosa Wrote:

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=188
https://www.hpmuseum.org/forum/private.php?action=send&uid=188
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=188
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177883
javascript:Thread.reportPost(177883);
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/thread-20536-post-177902.html#pid177902
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/post-177883.html#pid177883

3rd October, 2023, 09:47 Post: #8

Perhaps not the best example as the main matrix has only real elements

Let’s consider small inductive reactances in series with the voltage sources and get a set of equations that does require a
complex system solver:

(R₁ + XL₁)I₁ - XL₁I₂ + 220√3/3∠120° = 220√3/3

(R₂ + XL₂)I₂ - XL₂I₃ + 220√3/3 = 220√3/3∠-120°

(R₃ + XL₃)I₃ - XL₃I₁ + 220√3/3∠-120° = 220√3/3∠120°

R₁ = R₂ = 12.1 Ω; R₃ = 24.2 Ω; XL₁ = XL₂ = XL₃ = j0.1 Ω

A =

| 12.1 0 0 |
| 0 12.1 0 |
| 0 0 24.2 |

B =

| 0.1 -0.1 0 |
| 0 0.1 -0.1 |
| -0.1 0 0.1 |

C =

| 190.5255888 |
|-190.5255888 |
| 0.000000000 |

D =
|-110 |

|-110 |
| 220 |

GSB C GSB D ->

X =
| I₁ |
| I₂ |
| I₃ |

=

C =
| 15.7426645800 |
|-15.8956234800 |
| 0.07647945438 |

D =
|-9.352382547 |
|-8.958908239 |
| 9.155645392 |

or

I₁ = 18.31115909∠-30.71364707°

I₂ = 18.24644849∠-150.5940233°

I₃ = 9.155964813∠89.52140479°

35 seconds on my old 15C (26 s + 9 s).

P.S.: When checking it upon the 48GX I noticed discrepancies in some results, starting in the third or fourth digits, plus one
inconsistent angle (changed sign). It turns out that I had missed a negative sign in the beginning, when doing a polar to
rectangular conversation. The element D(2.1) should be -110, not 110. Fixed.
This would cause less disturbance in the previous post example, only a few sign changes, which made the error harder to
detect. A closer look to the angles values would have made the inconsistency evident, though. I will correct that as well.

Werner
Senior Member

Posts: 813
Joined: Dec 2013

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=188
https://www.hpmuseum.org/forum/private.php?action=send&uid=188
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=188
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177902
javascript:Thread.reportPost(177902);
https://www.hpmuseum.org/forum/thread-20536-post-177958.html#pid177958
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

3rd October, 2023, 16:28 (This post was last modified: 3rd October, 2023 16:41 by Gerson W. Barbosa.) Post: #9

(3rd October, 2023 09:47)

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Thank you, Gerson!
In the meantime I updated my post with a new, shorter and faster (for solving, at least) version.
It seems that every time I look at my code I find ways to improve it..

I also did some accuracy tests, with the example from pg 128 in the Advanced Functions Handbook, which you can now do on
your original 15C:
(I multiplied all values by 3 - then they are all integers):

A 4x4:
 300 0 0 0
 0 3E6 -3E6 0
 0 -3E6 3E6 0

 0 0 0 3E5

B 4x4:
 -350 800 0 0
 800 -350 0 0

 0 0 442 -450
 0 0 -450 442

C 4x1:
 30

 0
 0
 0

D 4x1:
 0

 0
 0
 0

exact result, rounded to 10 digits:
 (1.995795141E-4 , 4.096399085E-3)
 (-1.448833619E-3 , -3.563298308E-2)
 (-1.454083174E-3 , -3.563276083E-2)
 (5.344581171E-5 , -2.259868256E-6)

built-in result (on the 15CE, 8x8 matrix):
 (1.995820000E-4 , 4.096401051E-3)
 (-1.448812372E-3 , -3.563300015E-2)
 (-1.454061929E-3 , -3.563277790E-2)
 (5.344583732E-5 , -2.259863892E-6)

split solve result:
 (1.995574520E-4 , 4.096386294E-3)
 (-1.448834528E-3 , -3.563298920E-2)
 (-1.454084082E-3 , -3.563276695E-2)
 (5.344583458E-5 , -2.259876193E-6)

These results are comparable. The matrix is badly conditioned, so the results are only accurate to about 5 digits.
The split solve routine is slightly slower than the built-in one (without counting the necessary transformations to produce the
8x8 matrix, though!): 0.45 seconds vs. 0.36 seconds on the 15CE, but this latest version should be about 10% faster than the
previous one.

Cheers, Werner

Gerson W. Barbosa
Senior Member

Posts: 1,522
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Werner Wrote:

In the meantime I updated my post with a new, shorter and faster (for solving, at least) version.
It seems that every time I look at my code I find ways to improve it..

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177958
javascript:Thread.reportPost(177958);
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/thread-20536-post-177977.html#pid177977
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/post-177958.html#pid177958

5th October, 2023, 15:05 (This post was last modified: 6th October, 2023 13:28 by Werner.) Post: #10

(22nd September, 2023 22:22)

6th October, 2023, 05:30 (This post was last modified: 6th October, 2023 06:45 by Valentin Albillo.) Post: #11

Thanks again!

Now we have a really pocket calculator suitable for this kind of task, even the original HP-15C is fast enough to handle these.

It took about 30 seconds to solve my second example (20.5 s +9.5 s). Basically the same results.

C =
| 15.7426645800 | [-1 ULP]
|-15.8956234800 | [+2 ULP]
| 0.07647945442 | [+8 ULP, previously 4 ULP]

D =

|-9.352382547 | [-5 ULP]
|-8.958908239 | [-7 ULP]
| 9.155645395 | [-4 ULP]

or

I₁ = 18.31115909∠-30.71364707° [-1, 0 ULP]

I₂ = 18.24644849∠-150.5940233° [-2, 0 ULP]

I₃ = 9.155964816∠89.52140479° [-3, 0 ULP, previously -6, 0 ULP]

ULP comparisons with the HP-GX results which are assumed to be more accurate, but not granted to be always exact to 12
digits.

Edited to fix formatting

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Valentin Albillo Wrote:

The matrix A+B must be invertible, i.e. det(A+B) # 0. For most real-life uses this will be the case but if this condition isn't
met there are slight variations to this routine that would work Ok in those cases.

The problem is that the 15C alters a singular matrix slightly to produce a solution anyway, and you will probably not be aware
that it did. I would've liked for this to be optional - but it has even found its way into the 42S as well...

Werner

Valentin Albillo
Senior Member

Posts: 1,003
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hi all,

This is my 1,001th post here so I'm celebrating it with a new, significant improvement to the inversion routine I included
in my original post, but first a few comments are in order, as after a slow start this thread has been gathering momentum by
the day. Let's see:

Werner Wrote:

You make it increasingly harder for me to improve upon your code ;-) I did manage to squeeze off a puny byte [...]
The one thing I miss in your extensive posts, however, is some explanation of the algorithm used. [...] Shamelessly
stealing borrowing your idea, we can solve systems of equations the same way:

Thanks for your interest, Werner, I hope you're enjoying your new HP-15C CE and do not regret your purchase at all. It
certainly seems to have boosted your inspiration. As for the algorithms, as I said I leave that math-heavy discussion for the
future article out of consideration for people who just want to use the code and don't care for its innards.

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=188
https://www.hpmuseum.org/forum/private.php?action=send&uid=188
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=188
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=177977
javascript:Thread.reportPost(177977);
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/thread-20536-post-178049.html#pid178049
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178049
javascript:Thread.reportPost(178049);
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/thread-20536-post-178074.html#pid178074
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/post-177564.html#pid177564
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/thread-20536-post-177564.html#pid177564

As for squeezing off a puny byte, well, that's your specialty. See if you can oblige in my new code below. And as for
stealing/borrowing my idea, I appreciate your interest in my contributions and I don't resent you doing it at all, quite the
contrary, thanks for it.

Werner Again Wrote:

Not quite what you asked for, Valentin, but here's a short routine to multiply two split complex matrices.

Very nice, and yes, I was expecting a simple piece of code that would use conventional nested loops to perform the
multiplication by taking advantage of the 15C's native complex arithmetic, that's why I left it as an easy exercise for the
reader. As it wouldn't involve matrix inversion, it should run fast and accurately.

Werner Once More Wrote:

[Update: shaved off 2 bytes ;-)] Apologies for monopolizing this thread ;-)] [...] to invert A+iB, do (GSB) C and (GSB) E
[...] Routine C (Factor) - 21 bytes [...] Routine E (Invert) - 15 bytes

No need to apologize for monopolizing, I'm used to it by now. And congratulations for the 2-byte savings, it's no mean feat
and I know you enjoy doing it.

Per your figures, it seems you need to call two routines to invert a complex matrix, totalling 36 bytes in all, which is nice
taking into account that routine C is also used to solve a complex system if C is called first so C serves double duty. However,
just inversion alone can be done by calling a single 21-byte routine, as I show below.

Gerson Wrote:

The matrix capabilities in the HP-15C were nice, but the methods in the manual for solving complex linear systems were
somewhat complicated and not easy to remember [...] Doing it programmatically is a great idea, I wonder why no
one thought of this back then [...]

Thanks a lot for your great 4x4 EE examples for the original HP-15C, Gerson. The methods in the manual (both the OH and
the AFH) are wholly inadequate: extremely cumbersome, very difficult to remember when you needed them, outrageously
complicated and requiring several ad-hoc pre- and post-transformations, but the worst of all was their enormous inefficiency,
turning an NxN complex matrix into a 2Nx2N real one, doubling the memory required and more than doubling the computing
time. In short, a very poor performance by HP in the OH, and the AFH is no better in that regard.

And as for "I wonder why no one thought of this back then", I did, but when the HP-15C was introduced (1982) I had alreay
left PPC (and PPC TN) so I had nowhere to submit any further articles, plus I didn't have the money for a 15C or a 71B or
any other HP model with complex/matrix capabilities to implement my ideas, nor was I able to until 1985 and afterwards it
took me several years to join the MoHPC forum and it's only now that the 15C CE has appeared (with its tremendous 180x
speed and 3x the memory,) that I considered worthwhile and interesting to dust off my old notes, implement them and post
the results here.

So here you are, the announced improvement ...

The improvement: Complex Matrix Inversion up to 8x8 in 21 bytes

The complex matrix inversion routine I included in my original post is nice and fast and all that jazz, and even quite short at
31 steps (32 bytes, 5 regs), but it's a bit conservative and thus somewhat longish and I can do better by selecting a different
variant, as I'll explain right now.

The thing with complex inversion routines based on this specific split-matrix approach (M = A + iB) is that they require
inverting some real matrices (say A or B or A+B or A-B or a random linear combination of A and B, etc.) and thus said
matrices must be invertible (i.e. non-singular i.e. det#0).

The good point is that we get to choose which matrix must be invertible, and if the complex matrix includes that component or
combination and it happens to be singular, we can choose another that isn't, which would of course require a variant of the
inversion routine.

Needless to say, all of this only applies if complex M is invertible even if real A or B (say) are not, but even if both are singular
it might be the case that M is not and thus can be inverted using the particular routine which requires A+B (for instance) to be
invertible, which is the 31-step routine featured in my original post.

But that routine can be significantly shortened (by some 11 steps no less, 33% shorter) by assuming that A is invertible
(which for real-life problems is usually the case and for random matrices is always the case,) i.e. det(A)#0, and here's the
resulting improved complex inversion routine (which, as detailed below, can also be used when A is singular but B is not by
means of a simple trick):

Program listing

This 20-step (21-byte, 3-reg) routine can be used to invert an NxN complex matrix M = A + iB when A is invertible, and also
when A is singular but B is invertible using a simple trick, see details below.

https://www.hpmuseum.org/forum/thread-20536.html
https://www.hpmuseum.org/forum/thread-20536.html

 LBL C 001- 42,21,13
 RESULT A 002- 42,26,11
 RCL MATRIX E 003- 45,16,15
 RCL MATRIX B 004- 45,16,12
 RCL MATRIX A 005- 45,16,11
 1/x 006- 15
 RESULT E 007- 42,26,15
 x 008- 20
 RESULT A 009- 42,26,11
 CHS 010- 16
 RCL MATRIX B 011- 45,16,12
 LASTX 012- 43 36
 1/x 013- 15
 R▼ 014- 33
 MATRIX 6 015- 42,16, 6
 1/x 016- 15
 RESULT B 017- 42,26,12
 X<>Y 018- 34
 x 019- 20
 RTN 020- 43 32

Changes in the documentation

I could have edited the docs in my original post to cater for this new routine but that's not my personal policy; unlike most
people I only edit a post to correct typos or blatant errors, never to change, remove or add significant contents. Besides, the
original documentation fully applies to my original 31-step routine which is the one to use if both A and B are singular but
A+B is not, so its docs will remain as they currently are.

What I'll do here is to specify the changes in the docs pertaining to this new 20-step routine, including for context the
abridged paragraphs where they appear, with the changed parts in bold red. You should still refer to the original docs for
everything else (Notes, Requirements, Worked Example, etc.)

Changes in Notes:

It runs sequentially from its first to its last step, executing each just once, which means it executes exactly 20 user-code
instructions in all (not hundreds or thousands like other approaches,) so it runs very fast.

Comment: As 11 fewer instructions are executed in the new routine (33% less,) it runs somewhat faster.

Changes in Requirements:

The maximum size NxN complex matrix M you can invert depends on the memory available in your physical or virtual
device, as per this table:

 M A,B,E Regs +Prog Comments

 1x1 1x1 3 6 -
 2x2 2x2 12 15 -
 3x3 3x3 27 30 -
 4x4 4x4 48 51 Max. size w/ 15C/64 but see (*)
 5x5 5x5 75 78 ditto CE/96
 6x6 6x6 108 111 -
 7x7 7x7 147 150 ditto CE/192 but see (**)
 8x8 8x8 192 195 ditto DM15/M1B

so e.g. if you want to invert an 8x8 complex matrix you need 195 regs available, which includes matrices A, B (and E,)
plus 3 regs to hold the routine itself.

Comment: The new routine is only 21 bytes long, so it occupies exactly 3 regs of program memory. As the initial
routine occupied 5 regs, this means that now 2 extra regs are available for additional data or up to 14 additional
program steps.

The matrix A must be invertible, i.e. det(A)#0. For most real-life uses this will be the case but if this condition isn't met
there are slight variations to this routine that would work Ok in those cases, namely for any of the following invertible
matrices: B, A+B (dealt with in my original post in this thread,) A-B, etc.

Changes in (*) Observation re the original HP-15C and 4x4 complex matrices:

The original HP-15C could invert a 4x4 complex matrix but it took all 64 regs available and it was a complicated,
completely manual process as there wasn't any memory left for program code. On the other hand, running my routine is
a fast, automated process that leaves out all the drudgery (transformations, etc.) and still leaves 13 regs (up to 91
extra program steps) free for additional code or data. [...]

https://www.hpmuseum.org/forum/thread-20536.html
https://www.hpmuseum.org/forum/thread-20536.html

Call my complex inversion routine. When it ends, the complex inverse is stored in A, B and there's still 13 regs free. [...]

Get rid of auxiliary matrix E (redimension it to 0x0.) This frees another 16 regs, so there's now 29 regs available for
what follows.

Comment: There's now 29 regs still available in the original HP-15C after inverting a 4x4 complex matrix, which
can be used to store further data (e.g. the constant matrix and the solution matrix, when programmatically solving
a 4x4 system of complex equations (ignore the abstruse manual methods featured in the OH and AFH) or up to
203 program steps for additional code (e.g. your own program which uses the inversion routine,) or a combination
thereof.

Dimension both the constant matrix (say C) and the solution matrix (say D) to be 4x2 and populate the constant matrix.
This will leave 13 regs (i.e. as many as 91 program steps) still available for the matrix-multiplication code, which is left
as a fairly easy exercise for the reader (just a loop which multiplies each row of the inverse by the constant matrix using
the HP-15C's native complex arithmetic.)

Changes in (*) Observation re the HP-15C CE and 8x8 complex matrices:

Though there's not enough room in the HP-15C CE in 192-regs Mode to invert an 8x8 complex matrix M by running the
routine featured here (195 regs would be needed; the routine itself wouldn't fit) there's just enough room for the split
matrices A, B and the auxiliary matrix E (192 regs in all,) so the 8x8 complex matrix can be inverted in a pinch if the
user executes the 18 program instructions manually in sequential order. The procedure would be like this: [...]

Carefully execute manually the 18 instructions from 002 RESULT A to 019 x in sequential order. Assuming
you're reasonably proficient with the HP-15C, this should take 2 min or less [...]

Comment: As now there's only 18 instructions to manually execute instead of the 29 required by the original
routine, this makes the process all the more expeditious, less tiring to perform and much more likely to be
completed without error.

Also, it's a pity that the index registers R0, R1 and RI are permanent and can't be allocated to the common pool.
If it were possible, this inversion routine (which doesn't use the index registers,) could be stored in the 3 regs (21
bytes) they would provide, thus allowing for inverting 8x8 complex matrices programmatically. Alas, no such luck,
HP didn't see fit to allow for the possibility.

Using this routine when A is singular but B is not

As I explained above, usually different variants of my complex inversion routine are needed depending on whether (1) A is
invertible, or (2) A is singular but B is invertible, or (3) both A and B are singular but A+B (or A-B) is invertible.

My original 32-byte routine somewhat conservatively addressed the third case, where A and B can both be singular as long as
A+B isn't (a slightly-different, same-length variant would handle the invertible A-B case.)

Now, my new 21-byte routine caters for the first case (A is invertible.) The second case (A is singular but B is invertible) can
be dealt with using a near-symmetric same-length variant of the routine but actually there's no need to have two almost-
identical routines in memory at once, as a simple trick will allow the present one to also handle the second case (A singular, B
invertible), just proceed like this:

To compute using this routine the complex inverse of M = A + iB when A is singular but B is invertible:

1. Initialize and dimension matrices A, B as described in my OP's Worked example.

2. Swap the roles of A and B, i.e. store M's real parts in B and the imaginary parts in A.

3. Compute the complex inverse of this "swapped" matrix: GSB C

4. Now swap back the contents of A and B while also changing the signs of their elements on the fly. From the keyboard,
execute:

 RCL MATRIX A { swap back A and B using auxiliary matrix E ... }
 CHS { ... while also changing their signs at the same time }
 STO MATRIX E { done; matrix E now holds the negated contents of A }

 RCL MATRIX B { now matrix B is recalled to the X stack register ... }
 CHS { ... its contents are negated ... }
 STO MATRIX A { ... and stored back in A }

 RCL MATRIX E { finally, the negated contents of A held in matrix E ... }
 STO MATRIX B { ... are stored back in B and the swap is completed. }

Now A contains the real parts of M's true complex inverse, M', and B contains the imaginary parts, as desired.

Note: Of course, all those 8 instructions executed manually can be included as program lines to be executed programmatically after calling my
routine, in case A in singular but B is not. Using the ad-hoc variant of my routine for such case wouldn't need those 8 steps but then you'd have to

https://www.hpmuseum.org/forum/thread-20536.html

6th October, 2023, 13:23 Post: #12

(6th October, 2023 05:30)

6th October, 2023, 16:51 (This post was last modified: 6th October, 2023 17:05 by J-F Garnier.) Post: #13

6th October, 2023, 19:37 Post: #14

include said routine's 20 steps as well. Oh, and there's a trick to swap the contents of two NxN matrices without needing a third auxiliary one.

That's all. I've missed a few usual suspects posting here but that's life, no hard feelings . As always, hope you
enjoyed it.

V.
Edit: a few typos.

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Valentin Albillo Wrote:

(..) See if you can oblige in my new code below

I have to live up to my reputation, don't I?

18 lines, 19 bytes:

001 LBL C
002 RCL MATRIX E

003 RCL MATRIX B
004 RCL MATRIX B
005 RCL MATRIX A
006 RESULT E
007 /

008 CHS
009 RCL MATRIX A
010 RESULT A
011 1/x
012 1/x
013 Rv

014 MATRIX 6
015 1/x
016 RESULT B
017 x
018 RTN

Personally, however, I prefer the previous, slightly longer code. It offers more protection against degenerate systems,
especially since, as I mentioned before, the 15C does not alert you when it encounters one, but alters it slightly so as to be
able to come up with *a* solution - even if it is only one of infinitely many.

Cheers, Werner

J-F Garnier
Senior Member

Posts: 848
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

I'm amazed by these little pieces of code posted by Valentin (congrats for your 1000 - now 1001 - posts !) and Werner.

I really appreciate short, powerful routines that expand the possibility of a machine.
And this is exactly the case here: the first thread from Valentin was providing a workaround for the 8x8 limit for real matrix
inversion.

Then this second thread goes further by getting the utmost from the limited memory of the HP-15c in the case of complex
matrices.
In the case of the 15c CE/192, this makes a difference and allows to manage 7x7 matrices instead of 6x6. An hypothetical 15c
CE/224 could even handle 8x8 matrices.

J-F

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=178074
https://www.hpmuseum.org/forum/editpost.php?pid=178074
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178074
javascript:Thread.reportPost(178074);
https://www.hpmuseum.org/forum/thread-20536-post-178082.html#pid178082
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178082
javascript:Thread.reportPost(178082);
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/thread-20536-post-178079.html#pid178079
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=13
https://www.hpmuseum.org/forum/private.php?action=send&uid=13
http://www.jeffcalc.hp41.eu/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=13
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178079
javascript:Thread.reportPost(178079);
https://www.hpmuseum.org/forum/thread-20536-post-178099.html#pid178099
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/post-178074.html#pid178074
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/user-13.html

(29th September, 2023 15:20)

Gerson W. Barbosa
Senior Member

Posts: 1,522
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Werner Wrote:

So, to solve a single 4x4 system, you'd need 3.4^2+2.4 = 56 registers. Since the program of 48 bytes uses 7 additional
registers, it still fits in an original 15C.

I’ve tried a 4x4 system on mine but it would stop with an Error 10 message on the display. MEM shows 1 15 9-0. Not a
problem for the HP-15C CE (MEM: 19 25 09-9 after program completion).

Problem is both det(A) and det(B) in that particular system are zero. It does give a solution, but it looks meaningless to me:

A =

| 12.1 0.0 0.0 12.10 |
| 0.0 12.1 0.0 12.10 |
| 0.0 0.0 24.2 24.20 |
| 12.1 12.1 24.2 48.4|

B =
| 0 0 0 0 |
| 0 0 0 0 |
| 0 0 0 0 |
| 0 0 0 0 |

C =
| 220 |
|-110 |
|-110 |
| 0.0 |

D =
| 0.000000000 |
| 190.5255888 |
|-190.5255888 |

| 0.000000000 |

=>

C =
| 5.425143454 |

| 13.47770233 |
|-24.62741542 |
|-5.425143453 |

D =

| 4.514866980 |
| 34.56742586 |
|-3.537691900 |
|-4.514866980 |

or

I₁ = 7.058059602∠39.76761789°

I₂ = 37.10195939∠68.69938684°

I₃ = 24.88021009∠-171.8254666°

I₄ = 7.058059601∠-140.2323821°

These may be a valid solution (I haven’t checked them out), but they don’t appear to be the solution for the problem I was
trying to solve.

In an attempt to circumvent that I changed slightly the last element of matrix A, which managed to give results very close to
the values I expected. I still have to doublecheck my equations for a possible mistake.

A =
| 12.1 0.0 0.0 12.100 |
| 0.0 12.1 0.0 12.100 |
| 0.0 0.0 24.2 24.200 |

https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/post-177805.html#pid177805

6th October, 2023, 21:38 Post: #15

6th October, 2023, 22:20 (This post was last modified: 7th October, 2023 13:26 by Gerson W. Barbosa.) Post: #16

(6th October, 2023 21:38)

| 12.1 12.1 24.2 48.39|

=>

C =
| 18.18181621000000 |
|-9.090911560000000 |

|-4.545456889000000 |
| 0.000002180000421 |

D =
|-0.000004626165054 |
| 15.74591168000000 |

|-7.872962425000000 |
| 0.000004820000930 |

or

I₁ = 18.18181621∠-0.000014578°

I₂ = 18.18181530∠120.0000142°

I₃ = 9.090913908∠-119.9999995°

I₄ = 0.00000529007∠65.66360913°

and

Ir₁ = I₁ + I₄ = 18.18181839∠0.0000006111°

Ir₂ = I₂ + I₄ = 18.18181838∠120.0000007°

Ir₃ = I₃ + I₄ = 9.09090864376 ∠-120.00000279°

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hi Gerson,
To solve a 4x4 system on an original 15C, you have to leave off the inversion code LBL E. I see you used up 9 registers for
programs, so you used the full 63 bytes and then there’s not enough room left to solve the system. LBL C and D together only
take 48 bytes so less than 7 registers, and then it will work (with 1 DIM (i)).
And yes, when A+B is singular you get a meaningless answer, unfortunately. The example you gave however, is rank-deficient
anyway as B=0 and det(A)=0, so in this case there is no workaround, save a Least Squares solution, which is a different beast
altogether.
Cheers, Werner

Gerson W. Barbosa
Senior Member

Posts: 1,522
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Werner Wrote:

And yes, when A+B is singular you get a meaningless answer, unfortunately. The example you gave however, is rank-
deficient anyway as B=0 and det(A)=0, so in this case there is no workaround, save a Least Squares solution, which is a
different beast altogether.

Hello, Werner,

Thanks for the enlightenment!
Anyway, I was able to get answers very close to the exact results, currents equal to 200/11 A and 100/11 A, shifted 120
degrees from each other. In this latest example instead of a wye I considered a delta three-phase voltage source. As a result,
rather than a simple 3x3 system that could be solved by hand, I ended up with a more complicated 4x4 system. If not for
anything else, at least another opportunity to use the new VW complex equation solver :-)

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=188
https://www.hpmuseum.org/forum/private.php?action=send&uid=188
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=188
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178099
javascript:Thread.reportPost(178099);
https://www.hpmuseum.org/forum/thread-20536-post-178102.html#pid178102
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178102
javascript:Thread.reportPost(178102);
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/thread-20536-post-178103.html#pid178103
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/user-188.html
https://www.hpmuseum.org/forum/post-178102.html#pid178102

11th October, 2023, 02:46 Post: #17

Best regards,

Gerson.

P.S.: I made indeed a mistake in the previous example by introducing an extra unnecessary equation.
Time for solving a 3x3 system on the original 15C is 32 seconds, not 30 as I said earlier; 56 second for a 4X4 system.
Instantly on the 15C CE.

Valentin Albillo
Senior Member

Posts: 1,003
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hi, all,

This thread's got a number of new posts so some comments ...

First Werner "2-byte" Proudly Wrote:

I have to live up to my reputation, don't I?

Indeed you did, shaving off 2 bytes from my original code once again. That's the third or fourth time in a row so I think you've
earned yourself the "2-byte" moniker.

Some remarks on your 18-step code vs. my 20-step routine:

Your use of [÷] at step 007 plus [1/x] at steps 011 and 012 means that matrix A gets processed three times: (1)
converting it to an LU-decomposed form, (2) then converting that LU form to A's inverse, and (3) finally inverting A's
inverse to get back A (possibly with some negligible rounding errors) for further use.

However, I'm not sure if [÷] (which returns the result of X-1Y,) does indeed compute the inverse (of A) before
the multiplication or, as I suspect, it simply computes A's LU form and then uses special multiplication rules as in
the case of MATRIX 5, which computes YTX without actually transposing Y.

On the other hand, my original code only subjects matrix A to two inversion procedures instead of your three
procedures detailed above, so I feel that your code's accuracy might be slightly degraded (whether the matrix is
degenerate or not,) and I also wonder if your routine's speed is negatively affected. Have you checked any of this ?

Well, I have ! These are the results:

As for speed, using J-F's 5x5 complex matrix featured in my OP (Worked example) and calling our respective inversion
routines 50 times in a loop I get these average timings:

 - my 20-step routine : 0.89" per call
 - your 18-step routine: 0.91" per call

so mine is negligibly faster (~2.2%).

And as for accuracy, I've checked it (again using J-F's handy 5x5 example) by inverting the complex matrix twice in
succession so that the original matrix ought to be returned if the inversion procedures were exact, then comparing each
returned matrix A', B' vs. their respective originals A, B (conveniently saved to C, D because the inversion is done in-
place and replaces the originals.)

The comparison consists simply in subtracting the returned matrices from the saved originals (which if the inversions
were error-free would result in the zero matrix,) and then computing the Row Norm (MATRIX 7) and the Frobenius
Norm (MATRIX 8) of the respective A' - A (C) and B' - B (D) subtractions. The results are as follows:

 GSB C, GSBC, RESULT E, Mine Yours
 RCL MATRIX A, RCL MATRIX C, -, MATRIX 7 -> 3.8753E-8 2.9381E-8
 LASTX, MATRIX 8 -> 3.0716E-8 2.2004E-8
 RCL MATRIX B, RCL MATRIX D, -, MATRIX 7 -> 4.3000E-8 4.4401E-8
 LASTX, MATRIX 8 -> 3.1621E-8 3.6484E-8

so you see, the differences are again very minor. Your errors are slightly better for matrix A while mine are slightly
better for matrix B, no big deal. And remember, these are the errors after inverting the complex matrix twice, the errors
for a single inversion should be significantly smaller.

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=188
https://www.hpmuseum.org/forum/private.php?action=send&uid=188
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=188
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178103
javascript:Thread.reportPost(178103);
https://www.hpmuseum.org/forum/thread-20536-post-178145.html#pid178145
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/thread-20536.html

11th October, 2023, 17:11 Post: #18

(11th October, 2023 02:46)

Then J-F Garnier Wrote:

I'm amazed by these little pieces of code posted by Valentin (congrats for your 1000 - now 1001 - posts !) and Werner.

Thanks, J-F. I was missing your comments.

Quote:

I really appreciate short, powerful routines that expand the possibility of a machine. And this is exactly the case here: the
first thread from Valentin was providing a workaround for the 8x8 limit for real matrix inversion.

With the HP-15C original and CE editions not having any sort of mass storage, it's vital that the programs are as short as
possible lest no one will bother to key them in, not even to just try them out, as it would be such a lengthy, error-prone chore.
And something had to be done about that annoying 8x8 limit, so partitioned matrices immediately sprang to mind.

Quote:

Then this second thread goes further by getting the utmost from the limited memory of the HP-15c in the case of complex
matrices. In the case of the 15c CE/192, this makes a difference and allows to manage 7x7 matrices instead of 6x6. An
hypothetical 15c CE/224 could even handle 8x8 matrices.

On the other hand, a not-so-hypothetical-but-actually-extant DM15 clone with firmware M1B (229 regs) can handle 8x8
complex matrices (and perhaps even systems of 8 complex equations in as many complex unknowns.) And if the CE/192 user
is not afraid of manually typing in just 16 or 18 instructions, he/she can invert an 8x8 complex matrix in the CE/192 as well,
it'll take just a little care and likely less than 2 min.

BTW, it's a real pity HP didn't make the index registers R0, R1 and RI allocatable because that would've left just enough
program space for the complex inversion routine itself so no need for manually typing in anything.

It's also a pity that Moravia didn't allow for the max. 229 registers in the CE, as SwissMicros did. The 37 extra regs might
come in handy for everything, 8x8 complex matrix handling in particular.

Perhaps this capability was intentionally left for a future HP-15C CE 2.0 version including

that many registers (229, or at least 224,)
a cable and a Connectivity Kit of sorts for mass storage, backups, outputting results, easy and convenient program/data
editing, sharing progs/data with an ...
... also-included software emulator for Windows/iOS/Android,
a patched firmware which corrects the bug in the "nut" emulation layer that fatally broke the embedded HP-16C and
might also affect the HP-15C ROM code in as-yet-unknown ways,
a printed color copy of the "Advanced Functions Handbook",
oh, and a "Thank you again !" card.

That way they'd easily milk yet another 130 € apiece from each of us ...

Best regards.
V.

Werner
Senior Member

Posts: 813
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hi Valentin.

Valentin Albillo Wrote:

[..] my original code only subjects matrix A to two inversion procedures instead of your three procedures detailed above, so
I feel that your code's accuracy might be slightly degraded (whether the matrix is degenerate or not,) and I also wonder if
your routine's speed is negatively affected. Have you checked any of this ?

I didn't run simulations because I knew that the results would be comparable in accuracy and timing.

timing:

the operations count is actually similar, if not the same, thanks to the 15C's ability to use a matrix' LU-decomposition
form in subsequent solve and inverse operations (which the 42S lacks btw). So while I do three operations (solve, and
two inversions), they take the same time as two inversions and a multiply:
WH:
. solve(A*E=B) = LU + n*solve(1). LU-decomp has an operations count of n^3/3 + O(n^2), 1 solve takes n^2
operations, so n solves take n^3 operations
. inversion of an LU-decomposed matrix has an operation count of 2/3*n^3 + O(n^2)

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=178145
https://www.hpmuseum.org/forum/editpost.php?pid=178145
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178145
javascript:Thread.reportPost(178145);
https://www.hpmuseum.org/forum/thread-20536-post-178370.html#pid178370
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/post-178145.html#pid178145

11th October, 2023, 18:54 Post: #19

(11th October, 2023 02:46)

. full inversion is n^3 + O(n^2) operations
total operation count is thus 3*n^3 + O(n^2)
VA: 2 full inversions of n^3 each, one matrix-matrix multiplication, also n^3, so total is also 3*n^3 + O(n^2) ...
Operation count however does not tell the whole story, and it is true that a matrix multiply is more efficient than n
solves - even if both have the
same operation count. That's probably where the 2% difference comes from?
I ran a test inverting the matrix 100 times, and could hardly see a second's difference in timing (and quite a bit of
fluctuation btw)
Additional remarks:
- things are different when solving a single right-hand side of course. Then solving is about 3 times as fast as multiplying by the inverse
- I dimly remember LINPACK switching to multiplying by the inverse when the number of right-hand sides grew very large; I can't find it in today's LAPACK
any more though. Both are to be taken with a grain of salt btw: it's not because I seem to remember it that it was so, and it's not because I don't find it that
it is not there..

accuracy

Solving is more accurate than pre-multiplying by the inverse. Somewhere in the LAPACK Working Notes is an example
where the solve routine has an error 5 orders of magnitude smaller than multiplying by the inverse. They also admit
these cases are hard to find, but in general solving is somewhat more accurate.
I compared solving A*E=B to pre-multiplying B by inv(A). FNRM of the difference between the calculated result and the
exact result was almost twice as large for the latter. However, the split inversion routine inverts A twice (both mine and
yours), before adding it to the matrix obtained by either solving or pre-multiplying by the inverse - so possible accuracy
gains made by solving i.o. inverting will be completely lost anyway.
solving

Quote:

However, I'm not sure if [÷] (which returns the result of X-1Y,) does indeed compute the inverse (of A) before the
multiplication or, as I suspect, it simply computes A's LU form and then uses special multiplication rules as in the case

of MATRIX 5, which computes YTX without actually transposing Y.

Those 'special multiplication rules' are called elimination and substitution.
(omitting the permutations) LU decomposition factors A into L*U, with L a lower triangular matrix with 1's on its
diagonal, and an upper triangular matrix U.
 A*x=b is then solved in two steps as
 L*y=b and
 U*x=y

e.g. the example of a 3x3 upper triangular matrix:

 u11 u12 u13 x1 y1
 u22 u23 * x2 = y2
 u33 x3 y3

is solved easily as follows, in order of operations:

 x3 := y3/u33;
 x2 := (y2 - u23*x3)/u22;
 x1 := (y1 - u12*x2 - u13*x3)/u11;

this is called 'back substitution'.
The lower unit triangular system is solved in a similar manner, and is called 'elimination' because the process is identical
to the one used to create the LU-decomp in the first place.
(Have a look at my 'classical solve' here, which performs these operations, the same (albeit in a different order) as the 15C does internally, but without the
benefit of 12-digit extended precision.
I should update that post, as the current version is more than 30 bytes shorter btw)

Cheers, Werner

Maximilian Hohmann
Senior Member

Posts: 1,151
Joined: Dec 2013

RE: [VA] SRC #015b - HP-15C & clones: COMPLEX Matrix Inverse up to 8x8

Hello!

Valentin Albillo Wrote:

That way they'd easily milk yet another 130 € apiece from each of us ...

I can guarantee that the next one is going to cost more than 130 Euros, especially if it comes with a printed colour book!
Books like that now tend to cost in excess of 30 Euros, especially if they are made in small numbers. And they are not getting
cheaper.

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178370
javascript:Thread.reportPost(178370);
https://www.hpmuseum.org/forum/thread-20536-post-178376.html#pid178376
https://www.hpmuseum.org/forum/thread-20355.html
https://www.hpmuseum.org/forum/user-43.html
https://www.hpmuseum.org/forum/post-178145.html#pid178145

Enter Keywords Search Thread

View a Printable Version

Send this Thread to a Friend

Subscribe to this thread

 English (American) Go

But most important, thanks for the effort of sharing your program(s) with us - and Werner of course as well! This really makes
a lot more sense than the method from the original manual. If anything, I would want these routines hardwired into the ROM
of the next version of the 15C!

Regards
Max

« Next Oldest | Next Newest »

User(s) browsing this thread: Valentin Albillo*

Contact Us | The Museum of HP Calculators | Return to Top | Return to Content | Lite (Archive) Mode | RSS
Syndication

Forum software: My BB, © 2002-2023 My BB Group.

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=43
https://www.hpmuseum.org/forum/private.php?action=send&uid=43
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=43
https://www.hpmuseum.org/forum/newreply.php?tid=20536&replyto=178376
javascript:Thread.reportPost(178376);
https://www.hpmuseum.org/forum/newreply.php?tid=20536
https://www.hpmuseum.org/forum/printthread.php?tid=20536
https://www.hpmuseum.org/forum/sendthread.php?tid=20536
https://www.hpmuseum.org/forum/usercp2.php?action=addsubscription&tid=20536&my_post_key=cddb523d361addde83d65aa332ee80e0
https://www.hpmuseum.org/forum/thread-20536-nextoldest.html
https://www.hpmuseum.org/forum/thread-20536-nextnewest.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/contact.htm
https://www.hpmuseum.org/
https://www.hpmuseum.org/forum/archive/index.php?thread-20536.html
https://www.hpmuseum.org/forum/misc.php?action=syndication
http://mybb.com/
http://mybb.com/

